We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We develop a scattering theory for perturbations of powers of the Laplacian on asymptotically Euclidean manifolds. The (absolute) scattering matrix is shown to be a Fourier integral operator associated to the geodesic flow at time $\pi $ on the boundary. Furthermore, it is shown that on ${{\mathbb{R}}^{n}}$ the asymptotics of certain short-range perturbations of ${{\Delta }^{k}}$ can be recovered from the scattering matrix at a finite number of energies.
We give an example of an elliptic second order pseudodifferential operator with a non-zero eta invariant. The operator is constructed on homogeneous bundles over compact Lie groups and is formed by composing differential operators and an operator of class In general it is not elliptic but in the special case of even dimensional bundles over SU(2) it is elliptic. The eta invariant is calculated in the special case and in the non elliptic case a difference eta invariant is obtained.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.