We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove the central limit theorem of random variables induced by distances to Brownian paths and Green functions on the universal cover of Riemannian manifolds of finite volume with pinched negative curvature. We further provide some ergodic properties of Brownian motions and an application of the central limit theorem to the dynamics of geodesic flows in pinched negative curvature.
In this paper we prove a short time asymptotic expansion of a hypoelliptic heat kernel on a Euclidean space and a compact manifold. We study the ‘cut locus’ case, namely, the case where energy-minimizing paths which join the two points under consideration form not a finite set, but a compact manifold. Under mild assumptions we obtain an asymptotic expansion of the heat kernel up to any order. Our approach is probabilistic and the heat kernel is regarded as the density of the law of a hypoelliptic diffusion process, which is realized as a unique solution of the corresponding stochastic differential equation. Our main tools are S. Watanabe’s distributional Malliavin calculus and T. Lyons’ rough path theory.
We define sets with finitely ramified cell structure, which are generalizations of post-critically finite self-similar sets introduced by Kigami and of fractafolds introduced by Strichartz. In general, we do not assume even local self-similarity, and allow countably many cells connected at each junction point. In particular, we consider post-critically infinite fractals. We prove that if Kigami’s resistance form satisfies certain assumptions, then there exists a weak Riemannian metric such that the energy can be expressed as the integral of the norm squared of a weak gradient with respect to an energy measure. Furthermore, we prove that if such a set can be homeomorphically represented in harmonic coordinates, then for smooth functions the weak gradient can be replaced by the usual gradient. We also prove a simple formula for the energy measure Laplacian in harmonic coordinates.
We prove explicit upper bounds for the torsional rigidity of extrinsic domains of minimal submanifolds $P^m$ in ambient Riemannian manifolds $N^n$ with a pole $p$. The upper bounds are given in terms of the torsional rigidities of corresponding Schwarz symmetrizations of the domains in warped product model spaces. Our main results are obtained via previously established isoperimetric inequalities, which are here extended to hold for this more general setting based on warped product comparison spaces. We also characterize the geometry of those situations in which the upper bounds for the torsional rigidity are actually attained and give conditions under which the geometric average of the stochastic mean exit time for Brownian motion at infinity is finite.
In 1977 D. G. Kendall considered diffusions of shape induced by independent Brownian motions in Euclidean space. In this paper, we consider a different class of diffusions of shape, induced by the projections of a randomly rotating, labelled ensemble. In particular, we study diffusions of shapes induced by projections of planar triangular configurations of labelled points onto a fixed straight line. That is, we consider the process in Σ13 (the shape space of triads in ℝ) that results from extracting the ‘shape information’ from the projection of a given labelled planar triangle as this evolves under the action of Brownian motion in SO(2). We term the thus-defined diffusions Radon diffusions and derive explicit stochastic differential equations and stationary distributions. The latter belong to the family of angular central Gaussian distributions. In addition, we discuss how these Radon diffusions and their limiting distributions are related to the shape of the initial triangle, and explore whether the relationship is bijective. The triangular case is then used as a basis for the study of processes in Σ1k arising from projections of an arbitrary number, k, of labelled points on the plane. Finally, we discuss the problem of Radon diffusions in the general shape space Σnk.
The main objective of this paper is to establish a large deviation principle for heat kernel measures on loop spaces. It gives an extension of Fang and Zhang's results on loop groups. For the proof, we use the continuity theorem of Lyons' rough path theory.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.