We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we first discuss the relation between $\text{VB}$-Courant algebroids and $\text{E}$-Courant algebroids, and we construct some examples of $\text{E}$-Courant algebroids. Then we introduce the notion of a generalized complex structure on an $\text{E}$-Courant algebroid, unifying the usual generalized complex structures on even-dimensional manifolds and generalized contact structures on odd-dimensional manifolds. Moreover, we study generalized complex structures on an omni-Lie algebroid in detail. In particular, we show that generalized complex structures on an omni-Lie algebra $\text{gl}\left( V \right)\oplus V$ correspond to complex Lie algebra structures on $V$.
To a Lie groupoid over a compact base $M$, the associated group of bisection is an (infinite-dimensional) Lie group. Moreover, under certain circumstances one can reconstruct the Lie groupoid from its Lie group of bisections. In the present article we consider functorial aspects of these construction principles. The first observation is that this procedure is functorial (for morphisms fixing $M$). Moreover, it gives rise to an adjunction between the category of Lie groupoids over $M$ and the category of Lie groups acting on $M$. In the last section we then show how to promote this adjunction to almost an equivalence of categories.
A surface $\sum$ endowed with a Poisson tensor $\pi$ is known to admit a canonical integration, $G\left( \pi \right)$, which is a 4-dimensional manifold with a (symplectic) Lie groupoid structure. In this short note we show that if $\text{ }\!\!\pi\!\!\text{ }$ is not an area form on the 2-sphere, then $G\left( \pi \right)$ is diffeomorphic to the cotangent bundle $T*\sum$. This extends results by the author and by Bonechi, Ciccoli, Staffolani, and Tarlini.
We propose a new, constructive theory of moving frames for Lie pseudo-group actions on submanifolds. The moving frame provides an effective means for determining complete systems of differential invariants and invariant differential forms, classifying their syzygies and recurrence relations, and solving equivalence and symmetry problems arising in a broad range of applications.