This paper proposes a procedure to improve the accuracy of the light aircraft 6 DOF simulation model by implementing model tuning and aerodynamic database correction using flight test data. In this study, the full-scale flight testing of a 2-seater aircraft has been performed in specific longitudinal manoeuver for model enhancement and simulation validation purposes. The baseline simulation model database is constructed using multi-fidelity analysis methods such as wind tunnel (W/T) test, computational fluid dynamic (CFD) and empirical calculation. The enhancement process starts with identifying longitudinal equations of motion for sensitivity analysis, where the effect of crucial parameters is analysed and then adjusted using the model tuning technique. Next, the classical Maximum Likelihood (ML) estimation method is applied to calculate aerodynamic derivatives from flight test data, these parameters are utilised to correct the initial aerodynamic table. A simulation validation process is introduced to evaluate the accuracy of the enhanced 6 DOF simulation model. The presented results demonstrate that the applied enhancement procedure has improved the simulation accuracy in longitudinal motion. The discrepancy between the simulation and flight test response showed significant improvement, which satisfies the regulation tolerance.