Bruns' Theorem states that the classical integrals of the gravitational three-body problem generate all algebraic integrals. We show that the first step in his proof, together with Ziglin's non-integrability criterion for complex systems, can be used to prove the non-existence of energy independent algebraic integrals in certain real analytic systems. We also show that this aspect of Bruns' argument is purely algebraic: We offer a proof based on elementary differential algebraic methods.