We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The $c_2$ invariant is an arithmetic graph invariant related to quantum field theory. We give a relation modulo p between the $c_2$ invariant at p and the $c_2$ invariant at $p^s$ by proving a relation modulo p between certain coefficients of powers of products of particularly nice polynomials. The relation at the level of the $c_2$ invariant provides evidence for a conjecture of Schnetz.
The ${{c}_{2}}$ invariant is an arithmetic graph invariant defined by Schnetz. It is useful for understanding Feynman periods. Brown and Schnetz conjectured that the ${{c}_{2}}$ invariant has a particular symmetry known as completion invariance. This paper will prove completion invariance of the ${{c}_{2}}$ invariant in the case where we are over the field with 2 elements and the completed graph has an odd number of vertices. The methods involve enumerating certain edge bipartitions of graphs; two different constructions are needed.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.