The population dynamics for the replicator equation has been well studied in continuous time, but there is less work that explicitly considers the evolution in discrete time. The discrete-time dynamics can often be justified indirectly by establishing the relevant evolutionary dynamics for the corresponding continuous-time system, and then appealing to an appropriate approximation property. In this paper we study the discrete-time system directly, and establish basic stability results for the evolution of a population defined by a positive definite system matrix, where the population is disrupted by random perturbations to the genotype distribution either through migration or mutation, in each successive generation.