Let ℱ be a countable plane triangulation embedded in ℝ2 in such a way that no bounded region contains more than finitely many vertices, and let Pp be Bernoulli (p) product measure on the vertex set of ℱ. Let E be the event that a fixed vertex belongs to an infinite path whose vertices alternate states sequentially. It is shown that the AB percolation probability function θΑΒ (p) = Pp(E) is non-decreasing in p for 0 ≦ p ≦ ½. By symmetry, θ AΒ(p) is therefore unimodal on [0, 1]. This result partially verifies a conjecture due to Halley and stands in contrast to the examples of Łuczak and Wierman.