Digitaria ciliaris var. chrysoblephara (Fig. & De Not.) R.R. Stewart is an annual xeromorphic weed that severely infests direct-seeded rice fields in China. Herbicide resistance is emerging in D. ciliaris var. chrysoblephara owing to extensive and recurrent use of the acetyl-CoA carboxylase (ACCase)-inhibiting herbicide metamifop. In this study, a total of 53 D. ciliaris var. chrysoblephara populations randomly sampled from direct-seeded rice fields across Jiangsu Province were investigated for metamifop resistance and potential resistance-endowing mutations. Single-dose assays revealed that 17 (32.1%) populations evolved resistance to metamifop and 5 (9.4%) populations were in the process of developing resistance. The resistance index (RI) of metamifop-resistant populations ranged from 2.7 to 32.1. Amino acid substitutions (Ile-1781-Leu, Trp-2027-Cys/Ser, and Ile-2041-Asn) in ACCase genes were detected in resistant D. ciliaris var. chrysoblephara plants and caused various cross-resistance patterns to ACCase-inhibiting herbicides. All of four resistant populations (YC07, YZ09, SQ03, and HA06), with different ACCase mutations, exhibited cross-resistance to the aryloxyphenoxypropionate (APP) herbicides cyhalofop-butyl (RI values: 10.0 to 19.9), fenoxaprop-P-ethyl (RI values: 53.7 to 132.8), and haloxyfop-P-methyl (RI values: 6.2 to 62.6), and the phenylpyrazoline (DEN) pinoxaden (RI values: 2.3 to 5.4), but responded differently to the cyclohexanedione (CHD) herbicides clethodim and sethoxydim. It is noteworthy that four postemergence herbicides used for rice cropping, including bispyribac-sodium, pyraclonil, quinclorac, and anilofos, showed poor control effect against D. ciliaris var. chrysoblephara, suggesting few alternations for managing this weed in rice fields except ACCase inhibitors. In conclusion, this work demonstrated that the D. ciliaris var. chrysoblephara had developed resistance to ACCase-inhibiting herbicides in rice cultivation of China, and target-site amino acid substitutions in ACCase were primarily responsible for metamifop resistance.