We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Tricyclic antidepressants are commonly employed orally to treat major depressive disorders and have been shown to be of substantial benefit in various chronic pain conditions. Among other properties they are potent Na+ channel blockers in vitro and show local anaesthetic properties in vivo. The present study aimed to determine their differential neurotoxicity, and that of novel derivatives as prerequisite for their potential use in regional anaesthesia.
Methods
To directly test neurotoxicity in adult peripheral neurons, the culture model of dissociated adult rat primary sensory neurons was employed. Neurons were incubated for 24 h with amitriptyline, N-methyl-amitriptyline, doxepin, N-methyl-doxepin, N-propyl-doxepin, desipramine, imipramine and trimipramine at 100 μmol, and at concentrations correlating to their respective potency in blocking sodium channels.
Results
All investigated substances showed considerable neurotoxic potency as represented in significantly decreased neuron numbers in cultures as compared to controls. Specifically, doxepin was more neurotoxic than amitriptyline, and both imipramine and trimipramine were more toxic than desipramine or amitriptyline. Novel derivatives of tricyclic antidepressants were, in general, more toxic than the parent compound.
Conclusions
Tricyclic antidepressants and novel derivatives thereof show differential neurotoxic potential in vitro. The rank order of toxicity relative to sodium channel blocking potency was desipramine < amitriptyline < N-methyl amitriptyline < doxepin < trimipramine < imipramine < N-methyl doxepin < N-propyl doxepin.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.