In this paper we introduce and study a dynamic notion of mean residual life (mrl) functions in the context of multivariate reliability theory. Basic properties of these functions are derived and their relationship to the multivariate conditional hazard rate functions is studied.
A partial ordering, called the mrl ordering, of non-negative random vectors is introduced and its basic properties are presented. Its relationship to stochastic ordering and to other related orderings (such as hazard rate ordering) is pointed out. Using this ordering it is possible to introduce a weak notion of positive dependence of random lifetimes. Some properties of this positive dependence notion are given.
Finally, using the mrl ordering, a dynamic notion of multivariate DMRL (decreasing mean residual life) is introduced and studied. The relationship of this multivariate DMRL notion to other notions of dynamic multivariate aging is highlighted in this paper.