A generalized semi-Markov process with reallocation (RGSMP) was introduced to accommodate a large class of stochastic processes which cannot be analyzed by the well-known model of an ordinary generalized semi-Markov process (GSMP). For stationary RGSMP whose initial distribution has a product form, we show that, for a randomly chosen clock of a fixed insensitive type, if the lifetime of this clock is changed to infinity, then the background process is stationary under a certain time change. This implies that the expected time required for the tagged clock to consume a given amount x of resource, called the attained sojourn time, is a linear function of x. Such stationarity and linearity results are known for two special RGSMPs: ordinary GSMP and Kelly's symmetric queue. Our results not only extend them to a general RGSMP but also give more detailed formulas, which allow us to calculate for instance the expected attained sojourn time while the background process is in a given state. Furthermore, we remark that analogous results hold for GSMP with point-process input, in which the lifetimes of clocks of a fixed type form an arbitrary stationary sequence (of not necessarily independent random variables).