We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We compute $ku^*\left(K\!\left({\mathbb{Z}}_p,2\right)\right)$ and $ku_*\left(K\!\left({\mathbb{Z}}_p,2\right)\right)$, the connective $KU$-cohomology and connective $KU$-homology groups of the mod-$p$ Eilenberg–MacLane space $K\!\left({\mathbb{Z}}_p,2\right)$, using the Adams spectral sequence. We obtain a striking interaction between $h_0$-extensions and exotic extensions. The mod-$p$ connective $KU$-cohomology groups, computed elsewhere, are needed in order to establish higher differentials and exotic extensions in the integral groups.
Bousfield and Friedlander defined the stable homotopy category in terms of the homotopy category of a model category of spectra. We will construct this model category following an approach similar to Mandell-May-Schwede-Shipley based on sequential spectra. A sequential spectrum is a sequence of pointed topological spaces (and structure maps), thus, a natural candidate for an analogue of weak homotopy equivalences are those maps of spectra inducing a weak homotopy equivalence at every level. However, we will see that these levelwise weak homotopy equivalences are not sufficient to define a class of weak equivalences leading to a meaningful stable homotopy theory. A key ingredient is the definition of homotopy groups of spectra and their isomorphisms. This generalises the notion of stable homotopy groups of topological spaces that we encountered earlier. Making these isomorphisms the weak equivalences of sequential spectra will give us a construction of our desired stable homotopy category. We end the chapter with an introduction to the Steenrod algebra and the Adams spectral sequence.
We make some computations in stable motivic homotopy theory over Spec ℂ, completed at 2. Using homotopy fixed points and the algebraic K-theory spectrum, we construct over ℂ a motivic analogue of the real K-theory spectrum KO. We also establish a theory of motivic connective covers over ℂ to obtain a motivic version of ko. We establish an Adams spectral sequence for computing motivic ko-homology. The E2-term of this spectral sequence involves Ext groups over the subalgebra A(1) of the motivic Steenrod algebra. We make several explicit computations of these E2-terms in interesting special cases.
We describe the dualization of the algebra of secondary cohomology operations in terms of generators extending the Milnor dual of the Steenrod algebra. In this way we obtain explicit formulæ for the computation of the E3-term of the Adams spectral sequence converging to the stable homotopy groups of spheres.
Hecke operators are used to investigate part of the
${{E}_{2}}$-term of the Adams spectral sequence based on elliptic homology. The main result is a derivation of
$\text{Ex}{{\text{t}}^{1}}$ which combines use of classical Hecke operators and $p$-adic Hecke operators due to Serre.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.