We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To provide a comprehensive synthesis of the effects of Zn supplementation on childhood body composition and adiposity-related hormone levels.
Design
Five electronic databases were searched for randomized controlled trials of Zn supplementation studies published before 28 February 2015. No statistical pooling of results was carried out due to diversity in study designs.
Setting
Community- or hospital-based, from fourteen developing and developed countries.
Subjects
Children and adolescents aged 0 to 10 years.
Results
Seven of the fourteen studies reported an overall or subgroup effect of Zn supplementation on at least one parameter of body composition, when determined by anthropometric measurements (increased mid upper-arm circumference, triceps skinfold, subscapular skinfold and mid upper-arm muscle area, and decreased BMI). Three out of the fourteen studies reported increased mean value of total body water estimated by bio-impedance analysis and increased fat-free mass estimated by dual energy X-ray absorptiometry and by total body water. Zn supplementation was associated with increased fat-free mass among stunted children. One study found supplementation decreased leptin and insulin concentrations.
Conclusions
Due to the use of anthropometry when determining body composition, a majority of the studies could not accurately address whether alterations in the fat and/or fat-free mass components of the body were responsible for the observed changes in body composition. The effect of Zn supplementation on body composition is not consistent but may modify fat-free mass among children with pre-existing growth failure.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.