We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Genetic influences on alcohol involvement are likely to vary as a function of the ‘alcohol environment,’ given that exposure to alcohol is a necessary precondition for genetic risk to be expressed. However, few gene–environment interaction studies of alcohol involvement have focused on characteristics of the community-level alcohol environment. The goal of this study was to examine whether living in a community with more alcohol outlets would facilitate the expression of the genetic propensity to drink in a genetically-informed national survey of United States young adults.
Methods
The participants were 2434 18–26-year-old twin, full-, and half-sibling pairs from Wave III of the National Longitudinal Study of Adolescent to Adult Health. Participants completed in-home interviews in which alcohol use was assessed. Alcohol outlet densities were extracted from state-level liquor license databases aggregated at the census tract level to derive the density of outlets.
Results
There was evidence that the estimates of genetic and environmental influences on alcohol use varied as a function of the density of alcohol outlets in the community. For example, the heritability of the frequency of alcohol use for those residing in a neighborhood with ten or more outlets was 74% (95% confidence limits = 55–94%), compared with 16% (95% confidence limits = 0–34%) for those in a neighborhood with zero outlets. This moderating effect of alcohol outlet density was not explained by the state of residence, population density, or neighborhood sociodemographic characteristics.
Conclusions
The results suggest that living in a neighborhood with many alcohol outlets may be especially high-risk for those individuals who are genetically predisposed to frequently drink.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.