By blending techniques from set theory and algebraic topology we investigate the order of any homeomorphism of the nth power of the long ray or long line L having finite order, finding all possible orders when n = 1, 2, 3 or 4 in the first case and when n = 1 or 2 in the second. We also show that all finite powers of L are acyclic with respect to Alexander-Spanier cohomology.