Co-ingestion of almonds with carbohydrate prevents excessive increase in plasma glucose level (PGL), but information about the functional fraction is limited. Identifying the functional fraction is necessary to use almonds more efficiently in terms of controlling postprandial glycaemia after a high-carbohydrate meal. In the present study, we evaluated the effects of almond skin, oil, water-soluble fraction and water-insoluble fraction on both postprandial glycaemia and insulinaemia. The effect of almond skin was tested by comparing the effect of whole almonds with the effect of skinless almonds. Male ICR mice were administered dextrin and 4 g/kg body weight test samples. After the administration, 2-h postprandial changes in glycaemia and insulinaemia were measured. Oil was the only fraction being able to blunt postprandial glycaemia. Interestingly, when co-ingesting with dextrin, almond oil did not change the insulin level compared with the control but whole almonds or skinless almonds triggered a 4-fold increase in insulin level. The co-ingestion of whole almonds or skinless almonds similarly suppressed the PGL at 15 and 30 min (P < 0·05), which means almond skin has no effect on postprandial glycaemia. Neither soluble nor insoluble fractions lead to any significant changes in postprandial glycaemia and insulinaemia. In conclusion, oil is the main functional component accounting for the glycaemia-lowering effect without altering insulin level.