A field study was conducted in 2014 and 2015 in Arkansas, Illinois, Indiana, Ohio, Tennessee, Wisconsin, and Missouri to determine the effects of tillage system and herbicide program on season-long emergence of Amaranthus species in glufosinate-resistant soybean. The tillage systems evaluated were deep tillage (fall moldboard plow followed by (fb) one pass with a field cultivator in the spring), conventional tillage (fall chisel plow fb one pass with a field cultivator in the spring), minimum tillage (one pass of a vertical tillage tool in the spring), and no-tillage (PRE application of paraquat). Each tillage system also received one of two herbicide programs; PRE application of flumioxazin (0.09 kg ai ha–1) fb a POST application of glufosinate (0.59 kg ai ha−1) plus S-metolachlor (1.39 kg ai ha–1), or POST-only applications of glufosinate (0.59 kg ha−1). The deep tillage system resulted in a 62, 67, and 73% reduction in Amaranthus emergence when compared to the conventional, minimum, and no-tillage systems, respectively. The residual herbicide program also resulted in an 87% reduction in Amaranthus species emergence compared to the POST-only program. The deep tillage system, combined with the residual program, resulted in a 97% reduction in Amaranthus species emergence when compared to the minimum tillage system combined with the POST-only program, which had the highest Amaranthus emergence. Soil cores taken prior to planting and herbicide application revealed that only 28% of the Amaranthus seed in the deep tillage system was placed within the top 5-cm of the soil profile compared to 79, 81, and 77% in the conventional, minimum, and no-tillage systems. Overall, the use of deep tillage with a residual herbicide program provided the greatest reduction in Amaranthus species emergence, thus providing a useful tool in managing herbicide-resistant Amaranthus species where appropriate.