Recent greening of vegetation across the Arctic is associated with warming temperatures, hydrologic change and shorter snow-covered periods. Here we investigated trends for a subset of arctic vegetation on the island of Greenland. Vegetation in Greenland is unique due to its close proximity to the Greenland Ice Sheet and its proportionally large connection to the Greenlandic population through the hunting of grazing animals. The aim of this study was to determine whether or not longer snow-free periods (SFPs) were causing Greenlandic vegetation to dry out and become less productive. If vegetation was drying out, a subsequent aim of the study was to determine how widespread the drying was across Greenland. We utilized a 15-year time-series obtained by the MODerate Resolution Imaging Spectroradiometer (MODIS) to analyze the Greenland vegetation by deriving descriptors corresponding with the SFP, the number of cumulative growing degree-days and the time-integrated Normalized Difference Vegetation Index. While the productivity of most vegetated areas increased in response to longer growing periods, there were localized regions that exhibited signs consistent with the drying hypothesis. In these areas, vegetation productivity decreased in response to longer SFPs and more accumulated growing degree-days.