The ocean quahog, Arctica islandica, is a commercially important bivalve in the eastern USA but very little is known about the recruitment frequency and rebuilding capacity of this species. As the longest-living bivalve on Earth, A. islandica can achieve lifespans in excess of 200 y; however, age determinations are difficult to estimate and age variability at size is extreme. Objectives for this study included the creation of an extremely large age-composition dataset to constrain age at length variability, development of reliable age-length keys (ALK), and descriptions of sex-based population dynamics for the quasi-virgin A. islandica population at Georges Bank (GB) within the greater US Mid-Atlantic stock. Sexually dimorphic characteristics are clearly present, as females are larger than males within age classes and males tend to dominate the oldest age classes. A male represented the maximum age of 261 years and is older than the maximum age previously documented for this region. Sex-specific ALKs were robust and reliable but not interchangeable. This population had higher estimated natural mortality rates than presumed for other regions in the Mid-Atlantic, and females have the highest mortality rate. However, recruitment expansion was also occurring which would affect the age-frequency data used to derive mortality estimates and result in higher mortality. Age frequencies at GB suggest effective recruitment to the population each year since 1867 CE. Reduced recruitment periods are documented and likely attributed to fluctuating environmental conditions. Sex-based demographics are clearly divergent in regard to growth rate, maximum size, longevity and mortality rates.