The transfer of herbicide resistance genes from crops to related species is one of the greatest risks of growing herbicide-resistant crops. The recent introductions of imidazolinone-resistant wheat in the Great Plains and Pacific Northwest regions of the United States and research on transgenic glyphosate-resistant wheat have raised concerns about the transfer of herbicide resistance from wheat to jointed goatgrass via introgressive hybridization. Field experiments were conducted from 2000 to 2003 at three locations in Washington and Idaho to determine the frequency and distance that imidazolinone-resistant wheat can pollinate jointed goatgrass and produce resistant F1 hybrids. Each experiment was designed as a Nelder wheel with 16 equally spaced rays extending away from a central pollen source of ‘Fidel-FS4’ imidazolinone-resistant wheat. Each ray was 46 m long and contained three rows of jointed goatgrass. Spikelets were collected at maturity at 1.8-m intervals along each ray and subjected to an imazamox screening test. The majority of all jointed goatgrass seeds tested were not resistant to imazamox; however, 5 and 15 resistant hybrids were found at the Pullman, WA, and Lewiston, ID, locations, respectively. The resistant plants were identified at a maximum distance of 40.2 m from the pollen source. The overall frequency of imazamox-resistant hybrids was similar to the predicted frequency of naturally occurring acetolactate synthase resistance in weeds; however, traits with a lower frequency of spontaneous mutations may have a relatively greater risk for gene escape via introgressive hybridization.