This paper presents limit theorems for the population sizes of a Bienaymé–Galton–Watson process allowing immigration. For the non-critical cases it is known that the limit distribution is non-defective iff a logarithmic moment of the immigration distribution is finite. The new results of this paper are concerned with the situation where this moment is infinite and give limit theorems for a certain slowly varying function of the population size. A parallel discussion is given for the critical case and also for the continuous-time process.
The methods of the paper are used to give some results on the rate of decay of the transition probabilities and on the growth rate of the stationary measure. These in turn are used to obtain some limit theorems for a reversed-time process.