In the framework of quantum probability, we present a simple geometrical mechanism which gives rise to binomial distributions, Gaussian distributions, Poisson distributions, and their interrelation. More specifically, by virtue of coherent states and a toy analogue of the Bargmann transform, we calculate the probability distributions of the position observable and the Hamiltonian arising in the representation of the classic group SU(2). This representation may be viewed as a constrained harmonic oscillator with a two-dimensional sphere as the phase space. It turns out that both the position observable and the Hamiltonian have binomial distributions, but with different asymptotic behaviours: with large radius and high spin limit, the former tends to the Gaussian while the latter tends to the Poisson.