We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Impaired emotional processing is a core feature of schizophrenia (SZ). Consistent findings suggested that abnormal emotional processing in SZ could be paralleled by a disrupted functional and structural integrity within the fronto-limbic circuitry. The effective connectivity of emotional circuitry in SZ has never been explored in terms of causal relationship between brain regions. We used functional magnetic resonance imaging and Dynamic Causal Modeling (DCM) to characterize effective connectivity during implicit processing of affective stimuli in SZ.
Methods
We performed DCM to model connectivity between amygdala (Amy), dorsolateral prefrontal cortex (DLPFC), ventral prefrontal cortex (VPFC), fusiform gyrus (FG) and visual cortex (VC) in 25 patients with SZ and 29 HC. Bayesian Model Selection and average were performed to determine the optimal structural model and its parameters.
Results
Analyses revealed that patients with SZ are characterized by a significant reduced top-down endogenous connectivity from DLPFC to Amy, an increased connectivity from Amy to VPFC and a decreased driving input to Amy of affective stimuli compared to HC. Furthermore, DLPFC to Amy connection in patients significantly influenced the severity of psychopathology as rated on Positive and Negative Syndrome Scale.
Conclusions
Results suggest a functional disconnection in brain network that contributes to the symptomatic outcome of the disorder. Our findings support the study of effective connectivity within cortico-limbic structures as a marker of severity and treatment efficacy in SZ.
It took almost a century and several discoveries in the seemingly unrelated field of quantum physics to allow researchers to be able to use changes in blood flow and volume to identify areas of neural activity. The most widely used techniques to do so include positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). In addition to measuring task-induced changes in cerebral blood flow (CBF) or cerebral metabolism, PET imaging can be used to directly and selectively assess the action of different neurotransmitters in the human brain in vivo. The change in the BOLD signal triggered by a brief neural event is known as the hemodynamic response (HDR). It is important to keep in mind that, as is the case with any experimental method, there are limitations and potential pitfalls that one needs to consider when designing, analyzing, or interpreting experiments using PET or fMRI.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.