A Bayesian procedure is developed for the estimation of parameters in the two-parameter logistic item response model. Joint modal estimates of the parameters are obtained and procedures for the specification of prior information are described. Through simulation studies it is shown that Bayesian estimates of the parameters are superior to maximum likelihood estimates in the sense that they are (a) more meaningful since they do not drift out of range, and (b) more accurate in that they result in smaller mean squared differences between estimates and true values.