In this paper, sliding panels are used to increase the bending stiffness of the classic corrugated flexible skin, and the corresponding application procedure for aircraft structures is developed. After the conceptual design of the corrugated flexible skin with sliding panels is proposed, the analytical models to calculate the equivalent tensile and bending properties are investigated. At the same time, its flexibility in the corrugation direction and the load-bearing capacity (is proportional to the bending stiffness) in the direction perpendicular to corrugation are studied by numerical simulation and experiment. The application procedure is established based on geometric analysis and strain definition, and according to this procedure, the corrugated flexible skin with sliding panels is applied to the drooping leading edge to eliminate the gap on the upper skin. The results show that the corrugated flexible skin with sliding panels has more bending stiffness than the classic corrugated flexible skin in the direction perpendicular to corrugation while maintaining the deform ability in the corrugation direction, and the application procedure is effective and can be applied to other parts of the aircraft structure.