We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider the two-dimensional shrinking target problem in beta dynamical systems (for general
$\beta>1$
) with general errors of approximation. Let
$f, g$
be two positive continuous functions. For any
$x_0,y_0\in [0,1]$
, define the shrinking target set
where
$S_nf(x)=\sum _{j=0}^{n-1}f(T_\beta ^jx)$
is the Birkhoff sum. We calculate the Hausdorff dimension of this set and prove that it is the solution to some pressure function. This represents the first result of this kind for the higher-dimensional beta dynamical systems.
In this paper, we investigate the two-dimensional shrinking target problem in beta-dynamical systems. Let $\unicode[STIX]{x1D6FD}>1$ be a real number and define the $\unicode[STIX]{x1D6FD}$-transformation on $[0,1]$ by $T_{\unicode[STIX]{x1D6FD}}:x\rightarrow \unicode[STIX]{x1D6FD}x\;\text{mod}\;1$. Let $\unicode[STIX]{x1D6F9}_{i}$ ($i=1,2$) be two positive functions on $\mathbb{N}$ such that $\unicode[STIX]{x1D6F9}_{i}\rightarrow 0$ when $n\rightarrow \infty$. We determine the Lebesgue measure and Hausdorff dimension for the $\limsup$ set
$$\begin{eqnarray}W(T_{\unicode[STIX]{x1D6FD}},\unicode[STIX]{x1D6F9}_{1},\unicode[STIX]{x1D6F9}_{2})=\{(x,y)\in [0,1]^{2}:|T_{\unicode[STIX]{x1D6FD}}^{n}x-x_{0}|<\unicode[STIX]{x1D6F9}_{1}(n),|T_{\unicode[STIX]{x1D6FD}}^{n}y-y_{0}|<\unicode[STIX]{x1D6F9}_{2}(n)\text{ for infinitely many }n\in \mathbb{N}\}\end{eqnarray}$$
We study the palindromic complexity of infinite words uβ,
the fixed points of the substitution over a binary alphabet,
φ(0) = 0a1, φ(1) = 0b1, with a - 1 ≥ b ≥ 1,
which are canonically associated with quadratic non-simple Parry
numbers β.
Beginning with a seminal paper of Rényi, expansions in noninteger real bases have been widely studied in the last forty years. They turned out to be relevant in various domains of mathematics, such as the theory of finite automata, number theory, fractals or dynamical systems. Several results were extended by Daróczy and Kátai for expansions in complex bases. We introduce an adaptation of the so-called greedy algorithm to the complex case, and we generalize one of their main theorems.
We study some arithmetical and combinatorial properties of
β-integers for β being the larger root of the equation
x2 = mx - n,m,n ∈ ℵ, m ≥ n +2 ≥ 3. We determine with
the accuracy of ± 1 the maximal number of β-fractional
positions, which may arise as a result of addition of two
β-integers. For the infinite word uβ> coding distances
between the consecutive β-integers, we determine precisely
also the balance. The word uβ> is the only fixed point of the
morphism A → Am-1B and B → Am-n-1B. In the case n = 1,
the corresponding infinite word uβ> is sturmian, and,
therefore, 1-balanced. On the simplest non-sturmian example with
n≥ 2, we illustrate how closely the balance and the
arithmetical properties of β-integers are related.
We study the complexity of the infinite word uβ associated with theRényi expansion of 1 in an irrational base β > 1.When β is the golden ratio, this is the well known Fibonacci word,which is Sturmian, and of complexity C(n) = n + 1.For β such thatdβ(1) = t1t2...tm is finite we provide a simple description ofthe structure of special factors of the word uβ. When tm=1we show thatC(n) = (m - 1)n + 1. In the cases when t1 = t2 = ... tm-1ort1 > max{t2,...,tm-1} we show that the first differenceof the complexity function C(n + 1) - C(n ) takes value in{m - 1,m} for every n, and consequently we determine thecomplexity of uβ. We show thatuβ is an Arnoux-Rauzy sequence if and only ifdβ(1) = tt...t1. On the example ofβ = 1 + 2cos(2π/7), solution of X3 = 2X2 + X - 1, we illustratethat the structure of special factors is more complicated fordβ(1) infinite eventually periodic.The complexity for this word is equal to 2n+1.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.