We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Several types of factorizations solve the main problems of system theory (e.g., identification, estimation, system inversion, system approximation, and optimal control). The factorization type depends on what kind of operator is factorized, and what form the factors should have. This and the following chapter are, therefore, devoted to the two main types of factorization: this chapter treats what is traditionally called coprime factorization, while the next is devoted to inner–outer factorization. Coprime factorization, here called “external factorization” for more generality, characterizes the system’s dynamics and plays a central role in system characterization and control issues. A remarkable result of our approach is the derivation of Bezout equations for time-variant and quasi-separable systems, obtained without the use of Euclidean divisibility theory. From a numerical point of view, all these factorizations reduce to recursively applied QR or LQ factorizations, applied on appropriately chosen operators.
This chapter presents an alternative theory of external and coprime factorization, using polynomial denominators in the noncommutative time-variant shift Z rather than inner denominators as done in the chapter on inner–outer theory. “Polynomials in the shift Z” are equivalent to block-lower matrices with a support defined by a (block) staircase, and are essentially different from the classical matrix polynomials of module theory, although the net effect on system analysis is remarkably similar. The polynomial method differs substantially and in a complementary way from the inner method. It is computationally simpler but does not use orthogonal transformations. It offers the possibility of treating highly unstable systems using unilateral series. Also, this approach leads to famous Bezout equations that, as mentioned in the abstract of Chapter 7, can be derived without the benefit of Euclidean divisibility methods.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.