We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This note corrects an error in our paper “A Galois correspondence for reduced crossed products of unital simple $\text{C}^{\ast }$-algebras by discrete groups”, http://dx.doi.org/10.4153/CJM-2018-014-6. The main results of the original paper are unchanged.
Let a discrete group $G$ act on a unital simple $\text{C}^{\ast }$-algebra $A$ by outer automorphisms. We establish a Galois correspondence $H\mapsto A\rtimes _{\unicode[STIX]{x1D6FC},r}H$ between subgroups of $G$ and $\text{C}^{\ast }$-algebras $B$ satisfying $A\subseteq B\subseteq A\rtimes _{\unicode[STIX]{x1D6FC},r}G$, where $A\rtimes _{\unicode[STIX]{x1D6FC},r}G$ denotes the reduced crossed product. For a twisted dynamical system $(A,G,\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D70E})$, we also prove the corresponding result for the reduced twisted crossed product $A\rtimes _{\unicode[STIX]{x1D6FC},r}^{\unicode[STIX]{x1D70E}}G$.
For an arbitrary discrete probability-measure-preserving groupoid $G$, we provide a characterization of property (T) for $G$ in terms of the groupoid von Neumann algebra $L(G)$. More generally, we obtain a characterization of relative property (T) for a subgroupoid $H\subset G$ in terms of the inclusions $L(H)\subset L(G)$.
In the 1970s, Feldman and Moore classified separably acting von Neumann algebras containing Cartan maximal abelian self-adjoint subalgebras (MASAs) using measured equivalence relations and 2-cocycles on such equivalence relations. In this paper we give a new classification in terms of extensions of inverse semigroups. Our approach is more algebraic in character and less point-based than that of Feldman and Moore. As an application, we give a restatement of the spectral theorem for bimodules in terms of subsets of inverse semigroups. We also show how our viewpoint leads naturally to a description of maximal subdiagonal algebras.
It is shown that any torsion unit of the integral group ring $\mathbb{Z}G$ of a finite group $G$ is rationally conjugate to an element of $\pm G$ if $G=XA$ with $A$ a cyclic normal subgroup of $G$ and $X$ an abelian group (thus confirming a conjecture of Zassenhaus for this particular class of groups, which comprises the class of metacyclic groups).