This paper reports the design, analysis, and control of a miniature vibration-driven planar locomotion robot called Shell. A vibration-driven system is able to achieve locomotion based on internal oscillations and anisotropic friction forces. In this robot design, two parallel oscillators are employed to provide propelling forces, and a blade-like support is designed to generate anisotropic frictional contact with the ground. If the two parallel oscillators are of different frequencies and amplitudes, two-dimensional locomotion of the robot can be achieved. To predict the robot's planar locomotion, a dynamic model is developed. Controlling the robot's locomotion and especially, the locomotion modes can be achieved by adjusting the vibration frequencies of the two internal oscillators. Experimental results show that Shell can be controlled to move rectilinearly and along circles with certain curvatures. In addition, by combining these basic trajectories, Shell can move freely on a horizontal plane.