Invasive species and acid rain cause global environmental problems. Creeping daisy, an invasive exotic allelopathic weed, has caused great damage in southern China, where acid rain is prevalent. The impact of the acidity of simulated acid rain (SAR) on soil nutrients, the decomposition of creeping daisy litter, and on the allelopathic potential of the surrounding soils was investigated. Litter was treated with SAR at different acidity (pH 2.5, 4.0, 5.6) or with water (pH 7.0) as a control. After 70 d, the remaining amount of creeping daisy litter, nutrient contents, and allelopathic potentials in the surrounding soil were determined. The litter decomposition was commensurate to the increase in the acidity of the SAR. Total C and N contents, NO3 −-N and available P increased, levels of NH4 +-N, the ratio of C/N and soil pH values decreased, water contents increased and then decreased, whereas available K did not significantly change in the soil surrounding the litters in response to the increase in the acidity of the SAR. Bioassays showed that SAR promoted the allelopathic activity in the soil surrounding the litter, as measured by seedling growth of turnip and radish. In conclusion, our results indicated that SAR influenced soil nutrient status, accelerated creeping daisy litter decomposition, and enhanced the allelopathic potential of its litter in the surrounding soil, suggesting that acid rain may enhance the invasiveness of creeping daisy plants.