The diode closure velocity has been investigated in pulsed high-power diodes operating with the mode of space-charge-limed bipolar flow. A combination of time-resolved electrical and optical diagnostics has been employed to study the basic phenomenon of the temporal and spatial evolutions of the diode plasmas. The results from the two diagnostics were compared. Since anode plasma rapidly expands, the diode closure speed vd increases in the end of the current pulse. The diode closure speed vd can be divided into three stages with a U-like whole shape. The obtained results can be used in various applications, for instance, the high-power microwave sources, electron-beam plasma heating, and material treating.