We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter surveys several different mathematical methods for time-dependent change of quantum states using quantum field theory. The Bloch sphere method is introduced, which can be used to show the physics discussed in Chapter 3, that electronic transitions, or “jumps,” are not instantaneous.
Appendix G: interaction between a monochromatic field and two-level atom. The problem is treated first in the case of a classical field and a quantum two-level system (semiclassical approach): It is characterised by a rotation of the Bloch vector (Rabi ocillation) and allows us to generate any qubit state by applying a field of well-controlled duration and amplitude. One then includes spontaneous emission to the model, and finally obtains the set of Bloch equations that are used in many different problems of light–matter interaction. One then considers the full quantum case of cavity quantum electrodynamics (CQED), where the field is single mode and fully quantum: this is the Jaynes–Cummings Hamiltonian approach, which is fully solvable when one negelcts spontaneous emission: quantum oscillations and revivals are predicted. Damping is then introduced in the model, and two regimes of strong and weak couplings are predicted in this case.
Typically, we are interested in a small system (a few particles, or some region in space), entangled with its surroundings. Exact equations (Dyson or Nakajima–Zwanzig) for the reduced system dynamics are readily derived using suitable projection operators. They are rarely solvable, however, since full account is taken for mutual influences between the system and its environment. Nevertheless, for weak mutual coupling, environment-induced dynamics in the (small) system can be much slower than system-induced dynamics in the (large) environment. This justifies the Born–Markov approximation, leading to closed equations for the system. In Hilbert space, we demonstrate the emergence of irreversible dynamics and exponential decay for pure sates. In Liouville space, we derive the Redfield equation. Invoking the secular (or, rotating-wave) approximation, we derive Pauli’s master equations, which properly account for relaxation to equilibrium. Rates of spontaneous emission, coherence transfer (Bloch equations), and pure dephasing are derived and analyzed for a dissipative qubit.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.