We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Boolean network tomography is another well-studied branch of network tomography, which addresses the inference of binary performance indicators (e.g., normal vs. failed, or uncongested vs. congested) of internal network elements from the corresponding binary performance indicators on measurement paths. Boolean network tomography fundamentally differs from additive network tomography in that it is a Boolean linear system inversion problem in which each measurement path only provides one bit of information and hence deserves a separate discussion. This chapter introduces a series of identifiability measures (e.g., k-identifiability, maximum identifiability index) to quantify the capability of Boolean network tomography in uniquely detecting and localizing failed/congested network elements. As the definitions of these identifiability measures are combinatorial in nature and hard to verify for large networks, the discussion focuses on polynomial-time verifiable conditions and computable bounds, as well as the associated algorithms.
Based on the identifiability measures for Boolean network tomography presented in Chapter 5, this chapter addresses the follow-up question of how to design the measurement system to optimize the identifiability measure of interest, with a focus on the placement of monitoring nodes.Depending on the mechanism to collect measurements, the problem is divided into (1) monitor placement, (2) beacon placement, and (3) monitoring-aware service placement, where the first approach requires monitoring nodes at both endpoints of each measurement path, the second approach requires a monitoring node only at one of the endpoints of each measurement path, and the third approach requires each measurement path to be the default routing path between a client and a server. As many of such problems are NP-hard, the focus is put on establishing the hardness of the optimal solution and developing polynomial-time suboptimal algorithms with performance guarantees. The chapter also covers a suite of path construction problems addressing how to construct or select measurement paths to optimize the tradeoff between identifiability and probing cost.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.