We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
While the quasilinear isothermal Euler equations are an excellent model for gas pipeline flow, the operation of the pipeline flow with high pressure and small Mach numbers allows us to obtain approximate solutions by a simpler semilinear model. We provide a derivation of the semilinear model that shows that the semilinear model is valid for sufficiently low Mach numbers and sufficiently high pressures. We prove an existence result for continuous solutions of the semilinear model that takes into account lower and upper bounds for the pressure and an upper bound for the magnitude of the Mach number of the gas flow. These state constraints are important both in the operation of gas pipelines and to guarantee that the solution remains in the set where the model is physically valid. We show the constrained exact boundary controllability of the system with the same pressure and Mach number constraints.
We present a fully automatic approach to recover boundary conditions and locations of thevessel wall, given a crude initial guess and some velocity cross-sections, which can becorrupted by noise. This paper contributes to the body of work regarding patient-specificnumerical simulations of blood flow, where the computational domain and boundaryconditions have an implicit uncertainty and error, that derives from acquiring andprocessing clinical data in the form of medical images. The tools described in this paperfit well in the current approach of performing patient-specific simulations, where areasonable segmentation of the medical images is used to form the computational domain,and boundary conditions are obtained as velocity cross-sections from phase-contrastmagnetic resonance imaging. The only additional requirement in the proposed methods is toobtain additional velocity cross-section measurements throughout the domain. The toolsdeveloped around optimal control theory, would then minimize a user defined cost functionto fit the observations, while solving the incompressible Navier-Stokes equations.Examples include two-dimensional idealized geometries and an anatomically realisticsaccular geometry description.
A new approach is presented for the boundary optimal control of the MHD equations in which the boundary control problem is transformed into an extended distributed control problem. This can be achieved by considering boundary controls in the form of lifting functions which extend from the boundary into the interior. The optimal solution is then sought by exploring all possible extended functions. This approach gives robustness to the boundary control algorithm which can be solved by standard distributed control techniques over the interior of the domain.
We study an optimal boundary control problem for the two dimensional unsteady linearized compressible Navier–Stokes equations in a rectangle. The control acts through the Dirichlet boundary condition. We first establish the existence and uniqueness of the solution for the two-dimensional unsteady linearized compressible Navier–Stokes equations in a rectangle with inhomogeneous Dirichlet boundary data, not necessarily smooth. Then, we prove the existence and uniqueness of the optimal solution over the control set. Finally we derive an optimality system from which the optimal solution can be determined.
In this paper we study Lavrentiev-type regularization concepts forlinear-quadratic parabolic control problems with pointwise state constraints. Inthe first part, we apply classical Lavrentiev regularization to a problem withdistributed control, whereas in the second part, a Lavrentiev-typeregularization method based on the adjoint operator is applied to boundarycontrol problems with state constraints in the whole domain. The analysis forboth classes of control problems is investigated and numerical tests areconducted. Moreover the method is compared with other numerical techniques.
We consider a linear coupled system of quasi-electrostatic equations which govern the evolution of a 3-D layered piezoelectric body. Assuming that a dissipative effect is effective at the boundary, we study the uniform stabilization problem. We prove that this is indeed the case, provided some geometric conditions on the region and the interfaces hold. We also assume a monotonicity condition on the coefficients. As an application, we deduce exact controllability of the system with boundary control via a classical result due to Russell.
We study Hamilton-Jacobi equations related to the boundary (or internal) control of semilinear parabolic equations, including the case of a control acting in a nonlinear boundary condition, or the case of a nonlinearity of Burgers' type in 2D. To deal with a control acting in a boundary condition a fractional power $(-A)^\beta$ – where (A,D(A)) is an unbounded operator in a Hilbert space X – is contained in the Hamiltonian functional appearing in the Hamilton-Jacobi equation. This situation has already been studied in the literature. But, due to the nonlinear term in the state equation, the same fractional power $(-A)^\beta$ appears in another nonlinear term whose behavior is different from the one of the Hamiltonian functional. We also consider cost functionals which are not bounded in bounded subsets in X, but only in bounded subsets in a space $Y\hookrightarrow X$. To treat these new difficulties, we show that the value function of control problems we consider is equal in bounded sets in Y to the unique viscosity solution of some Hamilton-Jacobi-Bellman equation. We look for viscosity solutions in classes of functions which are Hölder continuous with respect to the time variable.
We study the simultaneously reachable subspace for two strings
controlled from a common endpoint. We give necessary
and sufficient conditions for simultaneous spectral and approximate
controllability. Moreover we prove the lack of simultaneous exact
controllability
and we study the space of simultaneously reachable states
as a function of the position of the joint. For each type of controllability
result we give the sharp controllability time.
We prove the exact boundary controllability of the 3-D Euler equation
of incompressible inviscid fluids on a regular connected bounded open set when the
control operates on an open part of the boundary that
meets any of the connected components of the boundary.
The paper deals with a boundary control problem for the Maxwell dynamical
system in a bounbed domain
Ω ⊂ R3. Let ΩT ⊂ Ω be the subdomain
filled by waves at the moment T,
T* the moment at which the waves fill the whole
of Ω. The following effect occurs: for small enough
T the system is approximately controllable in ΩT whereas for
larger T < T* a lack of controllability is possible. The subspace of unreachable states
is of finite dimension determined by topological characteristics of ΩT.
Given a domain D in R” and two specified points P0 and P1 in D we consider the problem of minimizing u(p1) over all functions harmonic in D with values between 0 and 1 normalised by the requirement u(P0) = 1/2. We show that when D is suitably regular the problem has a unique solution u* which necessarily takes on boundary values 0 or 1 almost everywhere on the boundary. In the process we prove that it is possible to separate P0 and P1by a harmonic function whose boundary value is supported in an arbitrary set of positive measure. These results depend on the fact that (under suitable regularity conditions) a harmonic function which vanishes on an open subset of the boundary has a normal derivative which is almost everywhere non-vanishing in that set.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.