Classifying spaces and moduli spaces are constructed for two invariants of isolated hypersurface singularities, for the polarized mixed Hodge structure on the middle cohomology of the Milnor fibre, and for the Brieskorn lattice as a subspace of the Gauß–Manin connection. The relations between them, period mappings for μ-constant families of singularities, and Torelli theorems are discussed.