We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To assess the accuracy of the Varian PerfectPitch six-degree-of-freedom (6DOF) robotic couch by using a Varian SRS QA phantom.
Methods:
The stereotactic radiosurgery (SRS) phantom has five tungsten carbide BBs each with 7·5 mm in diameter arranged with the known geometry. Optical surface images and cone beam CT (CBCT) images of the phantom were taken at different pitch, roll and rotation angles. The pitch, roll, and rotation angles were varied from −3 to 3 degrees by inputs from the linac console. A total of 39 Vision RT images with different rotation angle combinations were collected, and the Vision RT software was used to determine the rotation angles and translational shifts from those images. Eight CBCT images at most allowed rotational angles were analysed by in-house software. The software took the coordinates of the voxel of the maximum CT number inside a 7·5-mm sphere surrounding one BB to be the measured position of this BB. Expected BB positions at different rotation angles were determined by multiplying measured BB positions at zero pitch and roll values by a rotation matrix. Applying the rotation matrix to 5 BB positions yielded 15 equations. A linear least square method was used for regression analysis to approximate the solutions of those equations.
Results:
Of the eight calculations from CBCT images, the maximum rotation angle differences (degree) were 0·10 for pitch, 0·15 for roll and 0·09 for yaw. The maximum translation differences were 0·3 mm in the left–right direction, 0·5 mm in the anterior–posterior direction and 0·4 mm in the superior–inferior direction.
Conclusions:
The uncertainties of the 6-DOF couch were examined with the methods of optical surface imaging and CBCT imaging of the SRS QA phantom. The rotational errors were less than 0·2 degree, and the isocentre shifts were less than 0·8 mm.
The aim of this study is to compare patient geometrical uncertainties in the treatment of breast boost three-dimensional conformal radiation therapy (3D-CRT) considering both manual alignment and automatic different registration methods in cone-beam computed tomography (CBCT).
Methods:
A total of 85 patients were chosen for this study. A total of 254 registrations of CBCT vs planning computed tomography (CT) were retrospectively performed using automatic registration algorithms from Elekta XVI system (Clipbox and Mask) to detect patient setup uncertainties. All CBCTs were also matched manually by three health professionals. Mean shift values obtained with manual registration performed by health professionals were used as reference. Absolute value of difference between automatic algorithm shifts and reference values shifts was collected for each enrolled patient considering the three different spatial directions (x,y,z), and the magnitude was calculated (δm for Mask and δc for Clipbox).
Results:
Data analysis showed a significant difference in δm and δc. t-Test statistics showed a high difference between Mask and Clipbox, in particular mean δm = (1.3 ± 0.1) mm and δc = (3.3 ± 1.2) mm (p-value <0.0001). Mask algorithm was performed in a very similar way with respect to the reference alignment, and the differences between these two procedures were of the order of 1 mm. Clipbox algorithm showed larger differences with manual registration.
Conclusions:
These results suggest that the Mask algorithm may be the optimal choice for patient setup verification in clinical practice for breast boost treatment in 3D-CRT.
The aim of this study was to optimise patient dose and image quality of Varian TrueBeam cone beam computed tomography (CBCT) pelvis, thorax and head and neck (H&N) images based on patient size.
Methods:
An elliptical phantom of small, medium and large size was designed representative of a local population of pelvis, thorax and H&N patients. The phantom was used to establish the relationship between image noise, CT and CBCT exposure settings. Using this insight, clinical images were optimised in phases and the image quality graded qualitatively by radiographers. At each phase, the time required to match the images was recorded from the record and verify system.
Results:
Average patient diameter was a suitable metric to categorise patient size. Phantom measurements showed the power relationship between noise and CBCT exposure settings of value −0·15, −0·35 and −0·43 for thorax, pelvis and H&N, respectively. These quantitative phantom measurements provided confidence that phased variation of ~±20% in mAs should result in clinically usable images. Qualitative assessment of almost 2000 images reduced the exposure settings in H&N images by −50%, thorax images by up to −66% and pelvis images by up to −80%. These optimised CBCT settings did not affect the time required to match images.
Findings:
Varian TrueBeam CBCT mAs settings have been optimised for dose and image quality based on patient size for three treatment sites: pelvis, thorax and H&N. Quantitative phantom measurements provided insight into the magnitude of change to implement clinically. The final optimised exposure settings were determined from radiographer qualitative image assessment.
The study aimed to assess the clinical feasibility of employing an automatic match during cone beam computed tomography (CBCT) imaging using prostatic calcifications within the 95% isodose set as the region of interest.
Materials and methods:
CBCT images were analysed on the 5th fraction in 34 patients evaluating the difference between standard manual soft tissue anatomy matching versus auto calcification matching. An assessment of the clinical feasibility of using prostatic calcifications during matching alongside considering the effect a more automated matching process has been conducted on interobserver variability.
Results:
The standard deviation values of the difference between the soft tissue match (baseline) versus automatic calcification matches fluctuated around 1 mm in all three axes for all of the matches carried out. The interobserver variability observed between the two radiographers was 0·055, 0·065 and 0·045 cm in the vertical, longitudinal and lateral axes, respectively.
Findings:
The clarity of the calcifications on the CBCT images might explain the low interobserver variability displayed by the two matching radiographers. A calcification provides a clear starting point for image matching before commencing a check of volumetric coverage, if the matching process begins in the same place, it can allow for a standardisation of matching technique between radiographers.
To use cone-beam computed tomography (CBCT) images for treatment planning, the Hounsfield unit (HU)-electron density (ED) calibration table for CBCT should be stable. The purpose of this study was to verify the stability of the HU values for the CBCT system over 1 year and to evaluate the effects of variation in HU-ED calibration curves on dose calculation.
Materials and Methods
A tissue characterisation phantom was scanned with the field of view (FOV) of size S (FOV-S) and FOV of size M (FOV-M) using the CBCT system once a month for 1 year. A single field treatment plan was constructed on digital phantom images to validate the dose distribution using mean HU-ED calibration curves and possible variations.
Results
HU values for each material rod over the observation period varied with trend. The HU value of the cortical bone rod decreased by about 100 HU for the FOV-S and by about 300 HU for the FOV-M. Possible variation in the HU-ED calibration curves produced a ≤17·9% dose difference in the dose maximum in the treatment plan.
Conclusions
The CBCT system should be calibrated periodically for consistent dose calculation.
The aim of this study was to assess the feasibility of radiographer led verification of cone-beam computed tomography (CBCT) images for patients with solitary lung tumours treated with stereotactic body radiotherapy treatment (SBRT).
Material and methods
CBCT setup images of 20 patients from the first fraction of each patient were retrospectively registered by therapeutic radiographers. The displacements recorded were compared with the clinical oncologist’s original online match. The time taken by radiographers to verify the CBCT images was also recorded.
Results
Overall agreement for all radiographers when compared with the clinical oncologist match was 91%. Interobserver variations between radiographers were X plane 0·87 (0·76–0·94); Y plane 0·74 (0·51–0·88); and Z plane 0·88 (0·78–0·95) intraclass correlation coefficient and 95% confidence interval. The average time taken for verification was 128 seconds.
Conclusion
Therapeutic radiographers are able to verify CBCT images for thorax SBRT with results comparable to the ‘gold standard’ clinical oncologists’ match, however additional training will be provided for online verification. The time taken was within acceptable limits.
A retrospective study was undertaken to analyse set-up variations in patients being treated with post-operative radiation therapy for carcinoma of gall bladder by image-guided radiotherapy (IGRT) using cone-beam computed tomography (CBCT) scans and paired kilovoltage beam portals (kVps).
Materials and methods
Three consecutive patients receiving post-operative radiation therapy for carcinoma of gall bladder were studied. A total of 32 imaging studies were performed. The immobilisation system was an all-in-one system along with a thermoplastic mask, with knees either resting on the knee rest or in a vacuum cushion. The CBCT scans and kVps were reviewed in an off-line mode. The surrogate markers used for matching during co-registration were 12th rib, coeliac trunk, vertebral bodies and canal. Individual readings were used to calculate mean shifts (m); the mean of these means (M) was calculated to arrive at the systematic error in each direction and its standard deviation (Σ) was calculated. The margins for set-up error (SM) were then calculated.
Results
There were a total of 32 readings of which 21 were CBCTs and 11 were kVps. The mean shifts in each direction for each patient were 0·06, 0·25 and 0·15 cm in vertical, longitudinal and lateral directions, respectively. The resultant planning target volume margins calculated were 0·24, 0·9 and 0·47 cm in vertical, longitudinal and lateral directions.
Conclusions
IGRT for upper abdominal malignancies using CBCT and kVps is a useful method to keep the margins for set-up error low. The use of surrogates for matching should be relevant to the target volume. Good immobilisation system helps in keeping the margins low.
In the era of dose escalation for localised prostate cancer, the dose–volume histogram (DVH) is integral to the assessment of rectum and bladder dose constraints. However, reliance on a single planning computerised tomography-based (P-CT) dose distribution may not account for variations in delivered dose that results from deformation of the prostate, bladder and rectum. This study uses cone-beam CT (CBCT) datasets from five patients to investigate the concordance between the dose prediction from the initial treatment plan and the dose delivered during treatment.
Methods
The intensity-modulated radiation therapy distribution used for treatment was superimposed on alternate day CBCT images for each patient. Dose metrics and absolute volumes for the prostate, rectum and bladder were extracted from the CBCT-based DVH. Differences in dose and volumes were compared with the P-CT values, and significance was tested using the Wilcoxon signed-rank test.
Results
For all five case studies, the prostate dose coverage on CBCT plans was lower than predicted with an average reduction of 3% in mean dose. Significant differences in rectal volumes and dose were observed in two out of five and four out of five patients, respectively. Reductions in bladder volume and subsequent increases in dose were observed for three out of five patients.
Conclusion
The DVH from P-CT was unable to consistently predict the dose delivered to the bladder and rectum. The current bowel and bladder preparation protocols used at our institution did not eliminate variation in bladder and rectum volumes for the five patients included in this study.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.