Dynamic stationary models for mixed time series and cross-section data are studied. The models are of simple, standard form except that the unknown coefficients are not assumed constant over the cross-section; instead, each cross-sectional unit draws a parameter set from an infinite population. The models are framed in continuous time, which facilitates the handling of irregularly-spaced series, and observation times that vary over the cross-section, and covers also standard cases in which observations at the same regularly-spaced times are available for each unit. A variety of issues are considered, in particular stationarity and distributional questions, inference about the parameter distributions, and the behaviour of cross-sectionally aggregated data.