In this paper, we present a microwave absorber based on carbon nanotubes (CNT) dispersed inside a BenzoCycloButen® (BCB) polymer. The high aspect ratio and remarkable conductive characteristics of CNT give rise to good absorbing properties for electromagnetic protecting in microelectronic devices with very low concentration. In this article, nanocomposites are prepared using a solution-mixing method and are then evaluated and modeled by means of coplanar test structures. First, CNT concentrations are quantified by image processing. The nanocomposites implemented with coplanar test waveguides are then characterized using a vector network analyzer from 40 MHz to 20 GHz. An algorithm is developed to calculate the propagation constant “γ”, attenuation constant “α”, and relative effective complex permittivity (ɛreff = ɛreff′ − jɛreff″) for each CNT concentration. The extracted effective parameters are verified using the electromagnetic FEM-based Ansoft's® high frequency structure simulator (HFSS). Power absorption (PA) of 7 dB at 15 GHz is obtained with only 0.37 weight percent of CNT concentration in the polymer matrix. The resulting engineerable and controllable composite provides consequently a novel degree of freedom to design and optimize innovative microwave components.