The liner parabolic equation \hbox{$\frac{\pp y}{\pp t}-\frac12\,\D y+F\cdot\na y={\vec{1}}_{\calo_0}u$} with Neumann boundary condition on a convex open domain 𝒪 ⊂ ℝdwith smooth boundary is exactly null controllable on each finite interval if 𝒪0is an open subset of 𝒪which contains a suitable neighbourhood of the recession cone of \hbox{$\ov\calo$}. Here, F : ℝd → ℝd is a bounded, C1-continuous function, and F = ∇g, where g is convex and coercive.