We determine the structure of the Hodge ring, a natural object encoding the Hodge numbers of all compact Kähler manifolds. As a consequence of this structure, there are no unexpected relations among the Hodge numbers, and no essential differences between the Hodge numbers of smooth complex projective varieties and those of arbitrary Kähler manifolds. The consideration of certain natural ideals in the Hodge ring allows us to determine exactly which linear combinations of Hodge numbers are birationally invariant, and which are topological invariants. Combining the Hodge and unitary bordism rings, we are also able to treat linear combinations of Hodge and Chern numbers. In particular, this leads to a complete solution of a classical problem of Hirzebruch’s.