We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The mathematics required to analyse higher dimensional curved spaces and space-times is developed in this chapter. General coordinate transformations, tangent spaces, vectors and tensors are described. Lie derivatives and covariant derivatives are motivated and defined. The concepts of parallel transport and a connection is introduced and the relation between the Levi-Civita connection and geodesics is elucidated. Christoffel symbols the Riemann tensor are defined as well as the Ricci tensor, the Ricci scalar and the Einstein tensor, and their algebraic and differential properties are described (though technical details of the derivationa of the Rimeann tensor are let to an appendix).
This last part of the book introduces the Einstein equation – the basic equation of general relativity, in much the same way that Maxwell’s equations are the basic equations of electromagnetism. Geometries such as the Schwarzschild geometry, or those of the FRW cosmological models, are particular solutions of the Einstein equation. Just three new mathematical ideas are needed to give an efficient and standard discussion of the Einstein equation: a more precise definition of vectors in terms of directional derivatives; the notion of dual vectors as a linear map from vectors to real numbers; and the covariant derivative of a vector field in curved spacetime. These mathematical concepts are introduced in this chapter.
We define general relativity. We first consider intrinsically curved spaces and the notion of metric. Einstein's theory of general relativity is defined, based on the two physical assumptions, that gravity is geometry, and that matter sources gravity, and leading to general coordinate invariance and the equivalence principle. Kinematics, specifically tensors, Christoffel symbol and covariant derivatives, is defined. The motion of a free particle in a gravitational field is calculated.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.