We investigate the effects of toxins on the multiple coexistence solutions of an unstirred chemostat model of competition between plasmid-bearing and plasmid-free organisms when the plasmid-bearing organism produces toxins. It turns out that coexistence solutions to this model are governed by two limiting systems. Based on the analysis of uniqueness and stability of positive solutions to two limiting systems, the exact multiplicity and stability of coexistence solutions of this model are established by means of the combination of the fixed-point index theory, bifurcation theory and perturbation theory.