We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For most of the finite subgroups of $\text{SL(3,}\,\text{C)}$ we give explicit formulae for the Molien series of the coinvariant algebras, generalizing McKay's formulae $\text{ }\!\![\!\!\text{ McKay99 }\!\!]\!\!\text{ }$ for subgroups of $\text{SU(2)}$. We also study the $G $-orbit Hilbert scheme
$\text{Hil}{{\text{b}}^{G}}({{\mathbf{C}}^{3}})$
for any finite subgroup $G $ of $\text{SO(3)}$, which is known to be a minimal (crepant) resolution of the orbit space
${{\mathbf{C}}^{3}}/G$
. In this case the fiber over the origin of the Hilbert-Chow morphism from
$\text{Hil}{{\text{b}}^{G}}({{\mathbf{C}}^{3}})$ to
${{\mathbf{C}}^{3}}/G$ consists of finitely many smooth rational curves, whose planar dual graph is identified with a certain subgraph of the representation graph of $G $. This is an $\text{SO(3)}$ version of the McKay correspondence in the $\text{SU(2)}$ case.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.