In this paper, a gravity map-matching algorithm is proposed based on a triangle constraint model. A high-accuracy triangle constraint model is constructed by using a short time and high-accuracy-featured inertial navigation system. In this paper, the principle of the gravity map-matching algorithm based on the triangle constraint model and a triangle matching parameter-parsing method are first introduced in detail. It is verified by test that the method is sensitive to the initial error value. By comparison to the commonly used Iterative Closest Contour Point (ICCP) and Sandia Inertial Terrain Aided Navigation (SITAN) algorithms respectively, the results show that this method is perfect in real-time performance and reliability, and its advantages are more obvious especially with a large initial error.