We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Hexagonal grids are valuable in two-dimensional applications involving Laplacian. The methods and analysis are investigated in current work in both linear and nonlinear problems related to anisotropic Laplacian. Ordinary and compact hexagonal grid finite difference methods are developed by elementary arguments, and then analyzed by perturbation for standard Laplacian. In the anisotropic case, analysis is done through reduction to the standard one by using Fourier vectors of mixed types. These hexagonal seven-point methods, with established theoretic stabilities and accuracies, are numerically confirmed in linear and semi-linear anisotropic Poisson problems, and can be applied also in time-dependent problems and in many applications in two-dimensional irregular domains.
In this paper, we propose a compact scheme to numerically study the coupled stochastic nonlinear Schrödinger equations. We prove that the compact scheme preserves the discrete stochastic multi-symplectic conservation law, discrete charge conservation law and discrete energy evolution law almost surely. Numerical experiments confirm well the theoretical analysis results. Furthermore, we present a detailed numerical investigation of the optical phenomena based on the compact scheme. By numerical experiments for various amplitudes of noise, we find that the noise accelerates the oscillation of the soliton and leads to the decay of the solution amplitudes with respect to time. In particular, if the noise is relatively strong, the soliton will be totally destroyed. Meanwhile, we observe that the phase shift is sensibly modified by the noise. Moreover, the numerical results present inelastic interaction which is different from the deterministic case.
A high-order numerical method for three-dimensional hydrodynamics is presented. The present method applies high-order compact schemes in space and a Runge-Kutta scheme in time to solve the Reynolds-averaged Navier-Stokes equations with the k-ε turbulence model in an orthogonal curvilinear coordinate system. In addition, a two-dimensional equation is derived from the depth-averaged momentum equations to predict the water level. The proposed method is first validated by its application to simulate flow in a 180° curved laboratory flume. It is found that the simulated results agree with measurements and are better than those from SIMPLEC algorithm. Then the method is applied to study three-dimensional hydrodynamics in a natural river, and the simulated results are in accordance with measurements.
In this paper, a conservative fifth-order upwind compact scheme using centered stencil is introduced. This scheme uses asymmetric coefficients to achieve the upwind property since the stencil is symmetric. Theoretical analysis shows that the proposed scheme is low-dissipative and has a relatively large stability range. To maintain the convergence rate of the whole spatial discretization, a proper non-periodic boundary scheme is also proposed. A detailed analysis shows that the spatial discretization implemented with the boundary scheme proposed by Pirozzoli [J. Comput. Phys., 178 (2001), pp. 81–117] is approximately fourth-order. Furthermore, a hybrid methodology, coupling the compact scheme with WENO scheme, is adopted for problems with discontinuities. Numerical results demonstrate the effectiveness of the proposed scheme.
A new approach for reducing error of the volume penalization method is proposed. The mask function is modified by shifting the interface between solid and fluid by toward the fluid region, where v and η are the viscosity and the permeability, respectively. The shift length is derived from the analytical solution of the one-dimensional diffusion equation with a penalization term. The effect of the error reduction is verified numerically for the one-dimensional diffusion equation, Burgers’ equation, and the two-dimensional Navier-Stokes equations. The results show that the numerical error is reduced except in the vicinity of the interface showing overall second-order accuracy, while it converges to a non-zero constant value as the number of grid points increases for the original mask function. However, the new approach is effectivewhen the grid resolution is sufficiently high so that the boundary layer,whose width is proportional to , is resolved. Hence, the approach should be used when an appropriate combination of ν and η is chosen with a given numerical grid.
Standard compact scheme and upwinding compact scheme have high order accuracy and high resolution, but cannot capture the shock which is a discontinuity. This work developed a modified upwinding compact scheme which uses an effective shock detector to block compact scheme to cross the shock and a control function to mix the flux with WENO scheme near the shock. The new scheme makes the original compact scheme able to capture the shock sharply and, more importantly, keep high order accuracy and high resolution in the smooth area which is particularly important for shock boundary layer and shock acoustic interactions. Numerical results show the scheme is successful for 2-D Euler and 2-D Navier-Stokes solvers. The examples include 2-D incident shock, 2-D incident shock and boundary layer interaction. The scheme is robust, which does not involve case related parameters.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.