We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Canadian Stroke Best Practice Recommendations suggests that patients suspected of transient ischemic attack (TIA)/minor stroke receive urgent brain imaging, preferably computed tomography angiography (CTA). Yet, high requisition rates for non-cerebrovascular patients overburden limited radiological resources, putting patients at risk. We hypothesize that our clinical decision support tool (CDST) developed for risk stratification of TIA in the emergency department (ED), and which incorporates Canadian guidelines, could improve CTA utilization.
Methods
Retrospective study design with clinical information gathered from ED patient referrals to an outpatient TIA unit in Victoria, BC, from 2015-2016. Actual CTA orders by ED and TIA unit staff were compared to hypothetical CTA ordering if our CDST had been used in the ED upon patient arrival.
Results
For 1,679 referrals, clinicians ordered 954 CTAs. Our CDST would have ordered a total of 977 CTAs for these patients. Overall, this would have increased the number of imaged-TIA patients by 89 (10.1%) while imaging 98 (16.1%) fewer non-cerebrovascular patients over the 2-year period. Our CDST would have ordered CTA for 18 (78.3%) of the recurrent stroke patients in the sample.
Conclusions
Our CDST could enhance CTA utilization in the ED for suspected TIA patients, and facilitate guideline-based stroke care. Use of our CDST would increase the number of TIA patients receiving CTA before ED discharge (rather than later at TIA units) and reduce the burden of imaging stroke mimics in radiological departments.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.