The force analysis of parallel manipulators is one of the important issues for mechanical design and control, but it is quite difficult often because of the excessive unknowns. A new approach using screw theory for a 3-RPS parallel mechanism is proposed in this paper. It is able to markedly reduce the number of unknowns and even make the number of simultaneous equations to solve not more than six each time, which may be called force decoupling. With this method, first the main-pair reactions need to be solved for, and then, the active forces and constraint reactions of all other kinematic pairs can be simultaneously obtained by analyzing the equilibrium of each body one by one. Finally, a numerical example and a discussion are given.