When the end-effector of a robotic arm grasps different payload masses, the output of joint motion will vary. By using a model reference adaptive control approach, the payload variation effect can be solved. This paper describes the design for a hybrid controller for serial robotic manipulators by combining a PID controller and a model reference adaptive controller (MRAC) in order to further improve the accuracy and joint convergence speed performance. The convergence performance of the PID controller, the MRAC and the PID+MRAC hybrid controller for 1-DOF, 2-DOF and subsequently 3-DOF manipulators is compared. The comparison results show that the convergence speed and its performance for the MRAC and the PID+ MRAC controllers is better than that of the PID controller, and the convergence performance for the hybrid control is better than that of the MRAC control.