We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove a necessary and sufficient condition for embeddability of an operator system into ${\mathcal{O}}_{2}$. Using Kirchberg’s theorems on a tensor product of ${\mathcal{O}}_{2}$ and ${\mathcal{O}}_{\infty }$, we establish results on their operator system counterparts ${\mathcal{S}}_{2}$ and ${\mathcal{S}}_{\infty }$. Applications of the results, including some examples describing $C^{\ast }$-envelopes of operator systems, are also discussed.
We introduce a family of infinite nonamenable discrete groups as an interpolation of the Higman–Thompson groups by using the topological full groups of the groupoids defined by $\beta $-expansions of real numbers. They are regarded as full groups of certain interpolated Cuntz algebras, and realized as groups of piecewise-linear functions on the unit interval in the real line if the $\beta $-expansion of $1$ is finite or ultimately periodic. We also classify them by a number-theoretical property of $\beta $.
This paper presents, by example, an index theory appropriate to algebras without trace. Whilst we work exclusively with Cuntz algebras the exposition is designed to indicate how to develop a general theory. Our main result is an index theorem (formulated in terms of spectral flow) using a twisted cyclic cocycle where the twisting comes from the modular automorphism group for the canonical gauge action on each Cuntz algebra. We introduce a modified K1-group for each Cuntz algebra which has an index pairing with this twisted cocycle. This index pairing for Cuntz algebras has an interpretation in terms of Araki's notion of relative entropy.
Let A and B be separable nuclear continuous C(X)-algebras over a finite dimensional compact metrizable space X. It is shown that an element σ of the parametrized Kasparov group KKX(A,B) is invertible if and only all its fiberwise components σx ∈ KK(A(x),B(x)) are invertible. This criterion does not extend to infinite dimensional spaces since there exist nontrivial unital separable continuous fields over the Hilbert cube with all fibers isomorphic to the Cuntz algebra . Several applications to continuous fields of Kirchberg algebras are given. It is also shown that if each fiber of a separable nuclear continuous C(X)-algebra A over a finite dimensional locally compact space X satisfies the UCT, then A satisfies the UCT.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.